INTERNATIONAL STANDARD

IEC 62447-1

First edition 2007-06

Helical-scan compressed digital video cassette system using 6,35 mm magnetic tape – Format D-12 –

Part 1: VTR specifications

CONTENTS

FO	REW	ORD		7
1	Scop	e		9
2			eferences	
3			ns and acronyms	
			•	
4			t and test conditions	
	4.1		nment	
	4.2		ence tape	
	4.3		ation tapes	
		4.3.1	Tape	
		4.3.2	Record locations and dimensions	
_	T	4.3.3	Calibration signals	
5	-			
	5.1			
	5.2			
	5.3		fluctuation	
	5.4		ence edge straightness	
	5.5	•	thickness	
	5.6		missivity	
	5.7		yield strength	
	5.8	•	etic coating	
^	5.9		ng coercivity	
6			rdings	
	6.1	•	speed	
	6.2		S	
	6.3		d location and dimensions	
	6.4		I track record tolerance zones	
	6.5		ve positions of recorded information	
		6.5.1	Relative positions of longitudinal tracks	
	0.0	6.5.2	Programme area reference point	
	6.6	•	zimuth	
		6.6.1 6.6.2	Cue and control track	
	6.7	0.0	Helical track	
7	6.7		port and scanner	
7	·		track data	
	7.1		al	
		7.1.1	Introduction	
		7.1.2	Labeling convention	
		7.1.3	Signal processing	
	7.0	7.1.4	Magnetization	
	7.2		and track information (ITI) sector	
		7.2.1	Structure	
		7.2.2	ITI preamble	
		7.2.3	Start sync area (SSA)	
		7.2.4	Track information area (TIA)	
		7.2.5	ITI postamble	40

	7.3	Audio	sector	41	
		7.3.1	Structure	41	
		7.3.2	Audio pre and post-amble	41	
		7.3.3	Audio sync block	41	
	7.4	Video	sector	45	
		7.4.1	Structure	45	
		7.4.2	Video pre and post-amble	46	
		7.4.3	Video sync block		
	7.5	Subcoo	de sector		
		7.5.1	Structure		
		7.5.2	Subcode preamble and postamble		
		7.5.3	Subcode sync block		
	7.6		ap		
8	Audio processing				
U	8.1	•	uction		
	8.2		ing mode		
	0.2	8.2.1	Source coding		
		8.2.2	Emphasis		
		8.2.3	Audio error code		
		8.2.4	Relative audio-video timing		
		8.2.5	Audio frame processing		
	8.3		shuffling		
			auxiliary data (AAUX)		
	8.4	8.4.1	AAUX source pack (AS)		
		8.4.2	AAUX source control pack (ASC)		
	0 5		correction code addition		
	8.5	8.5.1	Inner error correction code		
		8.5.2			
9	\/idoa		Outer error correction codessing		
9		•	-		
	9.1		uction		
	9.2	·			
	9.3		auxiliary data (VAUX)		
		9.3.1	VAUX source pack (VS)		
		9.3.2	VAUX source control pack (VSC)		
	9.4		correction code addition		
		9.4.1	Inner error correction code		
		9.4.2	Outer error correction code		
10			ocessing		
			uction		
	10.2	Subco	de data	67	
			Time code pack (TC)		
		10.2.2	Binary group pack (BG)	69	
			correction code addition		
11	Longitudinal tracks			71	
	11.1 Control track				
		11.1.1	Method of recording	71	
		11.1.2	Servo reference pulse	71	
		11 1 2	Flux polarity	71	

11.1.4 Flux level	71
11.1.5 Pulse width	71
11.1.6 Servo reference pulse timing	
11.1.7 Colour frame indication	
11.2 Cue track	
11.2.1 Method of recording	
11.2.2 Flux level	
11.2.5 Relative tilling	12
Annex A (normative) Tape tension	73
Annex B (normative) Track pattern during insert editing	74
Annex C (normative) Cross-tape track measurement technique	75
Annex D (informative) Relationship between tape length and recording time	78
Annex E (informative) Interface	79
Bibliography	81
Figure 1 – Location and dimensions of recorded tracks	14
Figure 2 – Location of recorded cue and control track	15
Figure 3 – Location and dimensions of tolerance zone of recorded helical tracks	18
Figure 4 – Possible scanner configuration and tape wrap for four-head construction	20
Figure 5 – Possible scanner configuration and tape wrap for eight-head construction	21
Figure 6 – Possible recording system configuration (informative)	23
Figure 7 – Sector arrangement on helical track	23
Figure 8 – Modulation for audio sector	24
Figure 9 – Modulation for video sector	25
Figure 10 – Modulation for subcode sector	26
Figure 11 – Possible block diagram for signal processing	27
Figure 12 – Bit stream before interleaved NRZI modulation	29
Figure 13 – Frequency characteristics of tracks	29
Figure 14 – Frequency characteristics of tracks (detail)	30
Figure 15 – Pre-coding	31
Figure 16 – Structure of ITI sector	33
Figure 17 – Structure of audio sector	41
Figure 18 – Structure of sync blocks in audio sector	42
Figure 19 – Structure of video sector	
Figure 20 – Structure of sync blocks in video sector	47
Figure 21 – Structure of subcode sector	48
Figure 22 – Structure of sync blocks in subcode sector	50
Figure 23 – Video and audio frame for the 1080/60i system	
Figure 24 – Video and audio frame for the 1080/50i system	
Figure 25 – Video and audio frame for the 720/60p system	
Figure 26 – Sample to audio data bytes conversion	
Figure 27 – Arrangement of AAUX packs in audio auxiliary data	55

Figure 28 – Data and inner parity of a data sync block	59
Figure 29 – Data and outer parity of a data sync block for audio sector	59
Figure 30 – Arrangement	63
Figure 31 – Data and outer parity of a data sync block for video sector	67
Figure 32 – Arrangement of subcode data	68
Figure 33 – Bit assignment for subcode data and parity	70
Figure 34 – Recorded control code waveform timing for the 60-Hz system	71
Figure 35 – Recorded control code waveform timing for the 50 Hz system	72
Figure B.1 – Typical track pattern during insert editing	74
Figure C.1 – Correction factors (actual tape speed, tension)	77
Figure C.2 – Track location error plot (example)	77
Figure C.3 – Cross-tape measurement technique	77
Figure E.1 – Block diagram of HD recorder	80
Table 1 – Record location and dimensions for the 60-Hz system	16
Table 2 – Record location and dimensions for the 50-Hz system	17
Table 3 – Parameters for a possible scanner design	19
Table 4 – Servo information	31
Table 5 – Bit stream of ITI preamble for servo information F ₀	33
Table 6 – Bit stream of ITI preamble for servo information F ₁	34
Table 7 – Bit stream of ITI preamble for servo information F ₂	35
Table 8 – Bit stream of SSA for servo information F ₀	36
Table 9 – Bit stream of SSA for servo information F ₁	37
Table 10 – Bit stream of SSA for servo information F ₂	38
Table 11 – Bit stream of TIA for servo information F ₀	39
Table 12 – Bit stream of TIA for servo information F ₁	39
Table 13 – Bit stream of TIA for servo information F ₂	39
Table 14 – Bit stream of ITI post-amble for servo information F ₀	40
Table 15 – Bit stream of ITI post-amble for servo information F ₁	40
Table 16 – Bit stream of ITI post-amble for servo information F ₂	40
Table 17 – ID data in audio sector	43
Table 18 – Audio application ID	43
Table 19 – Track pair number	44
Table 20 – Bit assignment of ID codewords	45
Table 21 – ID data in video sector	47
Table 22 – Video application ID	48
Table 23 – ID data in subcode sector	50
Table 24 – Subcode application ID	51
Table 25 – AAUX data	56
Table 26 – Mapping of AAUX source pack	56
Table 27 – Mapping of AAUX source control pack	57
Table 28 – Relation between the compressed macro block number and the data-sync	61

Table 29 – Relation between the compressed macro block number and the data-sync block for the 50 Hz system	62
Table 30 – VAUX data	
Table 31 – Mapping of VAUX source pack	63
Table 32 – Mapping of VAUX source control pack	64
Table 33 – FF/FS for the 1080-line system	65
Table 34 – FF/FS for the 720-line system	65
Table 35 – Mapping of subcode pack	68
Table 36 – Mapping of time code pack	69
Table 37 – Mapping of a binary group pack	70
Table C.1 – Nomenclature and calculation of track location error	76
Table D.1 – Tape length, thickness, and recording time	78

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HELICAL-SCAN COMPRESSED DIGITAL VIDEO CASSETTE SYSTEM USING 6,35 mm MAGNETIC TAPE – FORMAT D-12 –

Part 1: VTR specifications

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62447-1 has been prepared by IEC technical committee 100: Audio, video and multimedia systems and equipment.

The text of this standard is based on the following documents:

CDV	Report on voting	
100/1091/CDV	100/1186/RVC	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The list of all the parts of the IEC 62447-1 series, under the general title *Helical-scan* compressed digital video cassette system using 6,35 mm magnetic tape – Format D-12, can be found on the IEC website.

This Part 1 describes the VTR specifications which are tape, magnetization, helical recording, modulation method and basic system data for video compressed data.

Part 2 describes the specifications for encoding process and data format for 1080i, 1080p and 720p systems.

Part 3 describes the specifications for transmission of DV-based compressed video and audio data stream over 360 Mb/s serial digital interface.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

HELICAL-SCAN COMPRESSED DIGITAL VIDEO CASSETTE SYSTEM USING 6,35 mm MAGNETIC TAPE – FORMAT D-12 –

Part 1: VTR specifications

1 Scope

This part of IEC 62447 specifies the content, format, and recording method of the data blocks containing video, audio, and associated data which form the helical records on 6,35-mm tape in cassettes as specified in SMPTE 307M.

In addition, this standard specifies the content, format, and recording method for longitudinal cue and control tracks.

One compressed video channel, eight independent audio channels and subcode data are recorded on tape in the digital form. Each of these channels is capable of independent editing.

On the following digital video formats, the helical recordings are synchronized to:

- 1080 line/59,94 Hz field frequency;
- 1080 line/50 Hz field frequency;
- 720 line/59,94 Hz frame frequency.

These are hereafter referred to as the 1080/60i, 1080/50i, and 720/60p systems, respectively. Similarly, in this standard, the 60 Hz system nomenclature refers to both 1080/60i and 720/60p systems, whereas, the 50 Hz system refers only to the 1080/50i system. Nomenclature 1080 line system refers to both 1080/60i and 1080/50i systems, while the 720 line system refers only to the 720/60p system.

The recorded digital video signal shall be compressed according to the DV-based 100 Mb/s specification.

The recorded digital video signal, eight audio channels and subcode data shall be defined by the data structure according to the DV-based 100 Mb/s specification.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62447-2, Helical-scan compressed digital videocassette system using 6,35 mm magnetic tape – Format D-12 – Part 2: Compression format

SMPTE 12M:1999, Television, Audio and Film – Time and Control Code

SMPTE 276M:1995, Television – Transmission of AES-EBU Digital Audio Signals Over Coaxial Cable

SMPTE 292M:1998, Television – Bit-Serial Digital Interface for High-Definition Television Systems

 ${\sf AES3-1992(R1997)}, \ \ {\sf Serial} \ \ {\sf transmission} \ \ {\sf format} \ \ {\sf for} \ \ {\sf two-channel} \ \ {\sf linearly} \ \ {\sf represented} \ \ {\sf digital} \ \ {\sf audio} \ \ {\sf data}$